新葡京娱乐场网站-澳门葡京娱乐_澳门百家乐论坛_新全讯网3344555 (中国)·官方网站

首頁 > 講座預告 > 正文

講座預告

首頁 > 講座預告 > 正文

【韶風名家論壇】Convexity, Sparsity, Nullity and all that … in Machine Learning

發布時間 : 2017-03-28 00:00    點擊量:

分享:
報告時間
講座類型
報告題目:Convexity, Sparsity, Nullity and all that … in Machine Learning
主 講 人:Hamid Krim,北卡羅來州立大學教授,IEEE Fellow 
 
報告人簡介:
  Hamid Krim, 現任美國北卡羅來納州立大學電子與計算機工程系教授,研究興趣為統計信號和圖像分析、應用問題的數學建模。Krim教授曾擔任AT&T貝爾實驗室、麻省理工大學研究專家;曾獲貝爾實驗室杰出成績獎,美國國家科學基金會職業成就獎。目前,Krim是IEEE Transactions on Signal Processing的副主編IEEE Signal Processing Magazine的編委會成員,SPTM和Big Data Initiative的程序委會員會成員,2008年成為IEEE Fellow,被評為2015-2016年IEEE SP Society Distinguished Lecturer。
 
報告摘要:
  High dimensional data exhibit distinct properties compared to its low dimensional counterpart; this causes a common performance decrease and a formidable computational cost increase of traditional approaches. Novel methodologies are therefore needed to characterize data in high dimensional spaces.
  Considering the parsimonious degrees of freedom of high dimensional data compared to its dimensionality, we study the union-of-subspaces (UoS) model, as a generalization of thelinear subspace model. The UoS model preserves the simplicity of the linear subspace model, and enjoys the additional ability to address nonlinear data. We show a sufficient condition to use l1 minimization to reveal the underlying UoS structure, and further propose a bi-sparsity model (RoSure) as an effective algorithm, to recover the given data characterized by the UoS model from non-conforming errors/corruptions.
  As an interesting twist on the related problem of Dictionary Learning Problem, we discuss the sparse null space problem (SNS). Based on linear equality constraint, it first appeared in 1986 and hassince inspired results, such as sparse basis pursuit, we investigate its  relation to the analysis dictionary learning problem, and show that the SNS problem plays a central role, and may naturally be exploited  to solve dictionary learning problems.
  Substantiating examples are provided, and the application and performance of these approaches are demonstrated on a wide range of problems, such as face clustering and video segmentation.
 
主持人:歐陽建權教授,湘潭大學信息工程學院副院長
時 間:2017年3月30日下午2:00
地 點:工科樓北樓201
 
歡迎廣大師生參加!
 
湘潭大學信息工程學院
智能計算與信息處理教育部重點實驗室
2017年3月28日

關閉

友情鏈接:

地址:中國湖南湘潭  郵編:411105

版權所有?湘潭大學 (湘ICP備18021862號-2) 湘教QS3-200505-000059

湘公網安備 43030202001058號    

一二博| 百家乐官网桌游| 九运2024年-2043年| 百家乐桌布小| 大发888娱乐城客户端下载| 百家乐官网| 属鸡和属猪做生意好吗| 凱旋門百家乐娱乐城| 澳门百家乐官网出千吗| 赌场百家乐投注公式| 德州扑克书籍| 百家乐官网小路单图解| 大发888网址是多少| 淘宝博百家乐官网的玩法技巧和规则 | 皇家娱乐城| 百家乐官网怎么| 百家乐游戏打水| 鹿泉市| 百威百家乐官网的玩法技巧和规则 | 百家乐官网赌场讨论群| 诚信百家乐在线平台| 娱乐城送体验金| 澳门百家乐官网打法百家乐官网破解方法 | 百家乐怎么赢博彩正网| 百家乐官网如何投注法| 百家乐游戏免费| 百家乐官网游戏算牌| 大发888 894| 百家乐官网反缆公式| 大发888大发888| 乐天堂百家乐官网赌场娱乐网规则| 百家乐娱乐城| 太阳城菲律宾官网| 博必发百家乐官网的玩法技巧和规则| 百家乐实战路| 真人百家乐官网澳门娱乐城| 六合彩开奖日期| 百家乐必胜绝| 女优百家乐官网的玩法技巧和规则| 真人百家乐官网开户须知| 今天六合彩开什么|